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Charge Stripes Due to Electron Correlations in the
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We calculate the restricted phase diagram for the Falicov—Kimball model on a
two-dimensional square lattice. We consider the limit where the average con-
duction electron density is equal to the average localized electron density, which
is the limit related to the S, = 0 states of the Hubbard model. After considering
over 20,000 different candidate phases (with a unit cell of 16 sites or less) and
their thermodynamic mixtures, we find only about 100 stable phases in the
ground-state phase diagram, where the ground state is usually the phase
separated mixture of two or three stable phases, that often have different elec-
tron densities than in the Maxwell-constructed mixture. We analyze these phases
to describe where stripe phases occur and relate these discoveries (were appro-
priate) to the physics behind stripe formation in the Hubbard model.
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1. INTRODUCTION

We find it fitting to write a paper on the spinless Falicov—Kimball (FK)
model® to celebrate Elliott Lieb’s seventieth birthday. Elliott, and his
collaborators, provided two seminal results on this model: (i) the first, with
Tom Kennedy, proved that there was a finite temperature phase transition
to a checkerboard charge-density-wave (CDW) phase in two or more
dimensions for the symmetric half-filled case,*® and (ii) the second, with
Daniel Ueltschi and Jim Freericks, proved that the segregation principle
holds for all dimensions* (which states that if the total particle density is
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less than one, then the ground state is phase separated if the interaction
strength is large enough®). The Kennedy-Lieb result (along with an inde-
pendent Brandt—Schmidt paper”?®) inspired dozens of follow-up papers by
researchers across the world. The Freericks—Lieb—Ueltschi paper general-
ized Lemberger’s proof® from one dimension to all dimensions, which
finally proved the decade old Freericks—Falicov conjecture.® Both papers
are important, because they are the only examples where long-range order
and phase separation can be proved to occur in a correlated electronic
system.

The Falicov-Kimball model has an interesting history too. Leo
Falicov and John Kimball invented the spin-one-half version of the model
in 1969 to describe metal-insulator transitions of rare-earth compounds.®
It turns out that John Hubbard actually “discovered” the spinless version
of the FK model four years earlier in 1965,'” when he developed the alloy-
analogy solution to the Hubbard model® (the so-called Hubbard III
solution). This latter version was rediscovered by Kennedy and Lieb in
1986® when they formulated it as a simple model for how crystallization
can be driven by the Pauli exclusion principle.

In this contribution, we focus on another problem that can be
analyzed in the FK model—the problem of stripe formation in two dimen-
sions. The question of the relation between charge stripes, correlated elec-
trons, and high-temperature superconductivity has been asked ever since
static stripes were first seen in the nickelate’>'> and cuprate"'” materials
starting in 1993. Two schools of thought emerged to describe the theoreti-
cal basis for stripe formation in the Hubbard model. The Kivelson-Emery
scenario®? says that at large U the Hubbard model is close to a phase
separation instability but the long-range Coulomb force restricts the phase
separation on the nanoscale; a compromise results in static stripe-like
order. The Scalapino—-White scenario®2” says that stripes can form due to
a subtle balance between kinetic-energy effects and potential-energy effects,
mediated by spin fluctuations. No long range Coulomb interaction or
phase separation is needed to form these stripes. There are numerous
numerical studies that have tried to shed light onto this problem. Unfor-
tunately, they have conflicting results. High temperature series expansions
on the related ¢t —J model®? show that phase separation exists, but only
when J is large enough, so it is not present in the large-correlation-strength
limit of the Hubbard model (where J — 0). Monte Carlo calculations®*>?
and exact diagonalization studies®*** give different results: some calcula-
tions predict the stripe formation to occur, others show a linkage between
the stripe formation and the boundary conditions selected for the problem.
Mean-field-theory analyses®*3® seem to predict stripe formation without
any phase separation. One way to make sense of these disparate results is



Electron Correlations in the Two-Dimensional Spinless Falicov-Kimball Model 701

that both the energy of the intrinsic stripe phases and the energy for phase
separation are quite close to one another, so any small change (induced by
finite-size effects, statistical errors, effects of correlations not included in
the perturbative expansions, or due to terms dropped or added to the
Hamiltonian) can have a large effect on the phase diagram by producing a
small relative change in the energetics of the different many-body states
(because of their near degeneracy).

We take an alternate point of view here. We choose to examine a
model that can be analyzed rigorously, and can be continuously connected
to the Hubbard model. We choose the regime that connects directly with
the S, =0 states of the Hubbard model. The model we analyze is the
spinless Falicov—Kimball model on a square lattice

4]
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where ¢ (c;) creates (destroys) a spinless conduction electron at site i, # is
the hopping matrix element ({ij) denotes a summation over nearest-
neighbor pairs on a square lattice), w, =0 or 1 is a classical variable denot-
ing the localized electron number at site i, and U is the on-site Coulomb
interaction energy. The Fermionic operators satisfy anticommutation rela-
tions (c], ¢l), =0, (¢;, ¢;), =0, and (c], ¢;), = J,;. The symbol |4| denotes
the total number of lattice sites in the square lattice 4. We will always be
dealing with periodic configurations of localized electrons, which means we
can always consider our lattice to have a large but finite number of lattice
sites and periodic boundary conditions. A short presentation of these
results has already appeared.®”

The Falicov—Kimball model can be viewed as a Fermionic quantum
analogue of the Ising model, while the Hubbard model can be viewed as
the Fermionic quantum analogue of the Heisenberg model (indeed in the
large-U limit at half filling, the Falicov—Kimball model maps onto an
effective nearest-neighbor Ising model, while the Hubbard model maps
onto an effective nearest-neighbor Heisenberg model). The way to link the
Falicov—Kimball model to the Hubbard model is to imagine a generaliza-
tion of the Hubbard model where the down-spin hopping matrix element
differs from the up-spin hopping matrix element. Then as ¢, — 0, the down
spins become heavy and are localized on the lattice; the quantum-mechan-
ical ground state is determined by the configuration of down-spin electrons
that minimizes the energy of the up-spin electrons. This is precisely the
Falicov—Kimball model!

In order to maintain the connection to the Hubbard model in zero
magnetic field, we must choose the average conduction electron density
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p. =M Lele,>/)4] to be equal to the average localized electron density

i=1
pr =2, w,/|4|, which we do here. We study the evolution from the

checkerboard phase at half filling (p, = p; = 1/2) to the segregated phase,
which appears when p, = p, is small enough. Since these two phases are
drastically different from each other, the transition is likely to include
many different intermediate phases. Indeed, the ground state phase
diagram of the Falicov—Kimball model can be quite complex. There are
many different periodic phases that can be stabilized for different values of
U or p, = p,. Usually the ground state ends up being a thermodynamic
mixture of two or three different phases, with each phase having electron
densities that differ from those of the averaged mixture. As U becomes
large though, the phase diagram simplifies, as the segregated phase
becomes the ground state for wider and wider ranges of the electron
densities.

2. FORMALISM

Our strategy to examine the FK model is a brute-force approach
which is straightforward to describe, but tedious to carry out. We employ
the so-called restricted phase diagram approach, where we consider the
grand-canonical thermodynamic potential of the system for all possible
periodic phases of the localized electrons, selected from a finite set of can-
didate phases. In this work, we consider 23,755 phases, which corresponds
to the set of all inequivalent phases with a unit cell that includes 16 or
fewer lattice sites. In order to calculate the thermodynamic potential, we
first must determine the electronic band structure for the conduction elec-
trons for each candidate periodic phase. We employ a Brillouin-zone grid
of 110 x 110 momentum points for each bandstructure. This requires us to
diagonalize up to 16 x 16 matrices at each discrete momentum point in the
Brillouin zone and results in at most 16 different energy bands. Hence, our
calculations can be viewed as finite-size cluster calculations with cluster
sizes ranging from 110x110x1 up to 110x110x 16 depending on the
number of atoms in the unit cell. An example of such a bandstructure is
shown in Fig. 1. The eigenvalues of the band structure are summed to
determine the ground-state energy for each number of conduction elec-
trons. The Gibbs thermodynamic potential is then calculated for all pos-
sible values of the chemical potentials of the conduction and localized
electrons through the formula

1
G({Wi})=m Z €({wi})—tep.—1spy, 2
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Fig. 1. Bandstructure along the irreducible wedge of the square lattice Brillouin zone for the
truly two-dimensional configuration numbered 108 and depicted in Fig. 3. In panel (a) we plot
the band structure and the density of states for U =2. In panel (b) we show the same for
U =4. Note how there is less band overlap as U increases.

with u, and u, denoting the chemical potentials for the conduction and
localized electrons, respectively, and &, denoting the number of atomic
sites in the unit cell for the given configuration of localized electrons. The
symbol €;({w;}) denotes the energy eigenvalues of the band structure for
the given configuration of localized electrons. Since the thermodynamic
potential is concave, the phase diagram can be directly determined in the
chemical potentials plane.®**” Next, we convert the grand canonical
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ensemble into a canonical ensemble to determine the ground-state phase
diagram as functions of p, and p,. We find the ground state is often a
phase separated mixture of two or three different phases, which can be
periodic phases, or the segregated phase. This step of the analysis is quite
complicated, because small areas of stability in the grand canonical phase
diagram can correspond to large regions in the canonical phase diagram,
and vice versa. Finally, we restrict the analysis to the case p, = p, and plot
the phase diagram as a function of the total filling for each chosen value of
U. Note that the constraint p, = p, is for the average electron densities of
the mixtures. It is often the case that the individual electron densities in a
given pure phase that appears in the mixtures will not satisfy p, = p,, even
though the mixture does. This computational algorithm is illustrated
schematically in Fig. 2.

We find that of the initial 23,755 candidate phases, only 111 can be
found in the ground-state phase diagram for the values of U that we con-
sidered. Any phase energetically excluded from appearing in the restricted
phase diagram must also be excluded from the complete phase diagram.
What we do not know is how our computed phase diagram will change as
more candidate phases are introduced (although the majority of these
additional phases also won’t appear in the phase diagram).

-
Determine each inequivalent

configuration of localized electrons
| with 16 or fewer atoms per unit cell. |

-
Translate the grand canonical phase
diagram to a canonical phase diagram
lin the electron densities plane.

-
rFor each configuration, calculate the ) Restrict to the case where the conduction
band structure on a grid of 110X110 electron density is equal to the localized

(momentum points. ) \electron density.

Lay out a grid of points in the chemical
potentials plane. For each point, evaluate
the thermodynamic potential, and
determine the configuration with the
lowest free energy.

Fig. 2. Flow chart that illustrates the algorithm employed to calculate the phase diagram of
the Falicov—Kimball model. Note that of the 23,755 candidate phases, only 111 appear in the
restricted phase diagram.
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3. RESULTS

The different phases that are stabilized in our restricted phase diagram
can be grouped into different families that represent different types of
geometric arrangements of the localized electrons. Unfortunately, there is
no way to rigorously categorize these phases, so the grouping we have
chosen arises in part from our personal taste in determining which phases
appear most similar. Nevertheless, the groupings we have made are in some
sense “‘obvious,” and we believe the analysis presented here is a useful way
to categorize and summarize the data. We will concentrate on describing
different kinds of striped phases that are present in the phase diagram and
we will motivate some of the physical principles behind their appearance in
the phase diagram.

We separate the different stable phases into 10 different groups. Every
stable phase is labeled by a number and depicted in Fig. 3. The small dots
indicate the absence of a localized electron, while the large dots indicate the
positions of the localized electrons. In the lower left corner, we shade in
the unit cell of the configuration and we show with the two solid lines the
translation vectors of the unit cell that allow the square lattice to be tiled
by the unit cell. The different families of configurations are as follows:
(i) the empty lattice (p, # 0 and p, = 0) denoted E which contains no local-
ized electrons (configuration 1); (ii) the full lattice (p, =0 and p,=1)
denoted F which contains a localized electron at each site (configuration 2);
(iii) the checkerboard phase (p,=p;=1/2) denoted Ch which has the
localized electrons occupying the A sublattice only of the square lattice in a
checkerboard arrangement (configuration 3); (iv) diagonal non-neutral
stripe phases (p, # 1—p;) denoted DS which consist of diagonal checker-
board phases separated by empty diagonal stripes of slope 1 (configura-
tion 4); (v) axial non-neutral checkerboard stripes (p,# 1—p,) denoted
AChS which consist of checkerboard regions arranged in stripes oriented
parallel to the x-axis and separated by empty stripes with slope 0 (con-
figurations 5-10); (vi) diagonal neutral stripe phases (p, =1—p;) denoted
DNS which consist of localized electrons arranged in the checkerboard
phase and separated by fully occupied striped regions of slope 1, or equiv-
alently, checkerboard phases with diagonal antiphase boundaries (con-
figurations 11-19); (vii) axial non-neutral stripe phases (p, # 1—p,) denoted
AS which consist of fully occupied vertical (or horizontal) stripes separated
by empty stripes, which are translationally invariant in the vertical (or
horizontal) direction (configurations 20-54); (viil) neutral phases
(p. =1—p,) denoted N which consist of neutral phases in an arrangement
that does not look like any simple stripe phase (some neutral phases can be
described in a stripe picture, such as configuration 61 which has a slope
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Conf. 1: 1x1 Conf.2: 1x1 Conf. 3: 2x 1 Conf. 4: 15x 1 Conf. 5: 2x8 Conf. 6: 2x7

54

Conf. 8: 2x5

Conf. 17: 12x1 Conf. 18: 5x 1

16 x 1 Conf.

Conf. 13: 11 x1 Conf. 14: 9 x 1

P

Conf. 20: 2x 1 Conf. 21: 15x 1 Conf. 22: 13x 1 Conf. 23: 11x1 Conf. 24: 9x1

L

Conf.

11x1 Conf. 32: 14 x1 Conf. Conf. 34: 16 x 1 Conf. 35: 13x 1 E 10x1
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L 52 1

Conf. 37: 7 x1 Conf. 38: 11 x1 Conf. 39: 15x 1 Conf. 40: 4 x 1 Conf. 41: 13x1 Conf. 42: 9 x 1

Fig. 3. Picture of the configurations of the localized electrons that appear in the restricted
phase diagram. The large dots refer to sites occupied by localized electrons, and the small
circles denote empty sites. The shaded region in the lower left corner shows the unit cell, and
the line segments show the translation vectors that are used to tile the two dimensional plane.
Each of the 111 configurations is assigned a number and we also note the size and shape of
the unit cell above each panel.
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Conf. 43: 14 x1 Conf. 44: 5x 1 Conf. 45: 16 x 1 Conf. 46: 11 x1 Conf. 47: 6x 1 Conf. 48: 13x 1

Conf. 53: 10x 1 Conf. 54: 11 x1

Conf. 49: 7 x 1

Conf. 55: 8x2 Conf. 56: 13 x 1 Conf. 57: 5x2 Conf. 58: 7 x 1 Conf. 59: 2x2 Conf. 60: 13x 1

Conf. 61: 9x1 Conf. 62: 7x2 Conf. 63: 5x 1 Conf. 64: 4x3 Conf. 65: 8 x 1 Conf. 66: 10 x 1

Conf. 79: 2x7 Conf. 80: 2x5 Conf. 81: 2x8 Conf. 82: 2x8 Conf. 83: 2x3 Conf. 84: 2x7

Conf. 85: 2x8 Conf. 86: 8x2 Conf. 87: 2x 4 Conf. 88: 2x 4 Conf. 89: 2x5 Conf. 90: 2x6

Fig. 3. Continued.
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Fig. 3. Continued.

1/3 empty lattice stripe, but we prefer to refer to them as non-stripe
phases) (configurations 55-70); (ix) four-molecule phases (p,#1—p;)
denoted 4M which can be described as a “bound” four-molecule square of
empty sites tiled inside an occupied lattice framework (configurations
71-74); (x) two-dimensional non-neutral phases (p, #1—p;) denoted 2D
which consist of phases with the localized electrons arranged in a fashion
that is not stripe-like and requires a two-dimensional unit cell to describe
them (once again, some phases like configuration 75 could be described as
a slope 3/2 stripe, but appears to us more like a 2D phase) (configurations
75-111). Note that our usage of the term neutral may not seem natural, but
it arises from the fact that a partial particle-hole transformation® (of either
the conduction or the localized electrons) will change U - —U and will
change the filling of the transformed electrons from p — 1 —p, resulting in
a neutral arrangement of particles for the attractive Falicov—Kimball
model. Hence the phases with p,+p, =1 in the repulsive case are con-
nected to these so-called neutral phases, so we use that nomenclature for
the repulsive case as well.

Generically, we find the canonical phase diagram does not contain
pure phases from one of the 111 stable phases, but rather forms mixtures of
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Table I. Summary of the Stability of Different Phases for the Five Different Values

of U Where We Performed Calculations (1, 2, 4, 6, and 8). Each Column Shows the

Phases that Appear in the Phase Diagram for a Given Value of U. The Numbers
Correspond to the Labels in Fig. 3

Phase category U=1 U=2 U=4 U=6 U=38
E 1 1 1 1 1
F 2 2 2 2
Ch 3 3 3 3 3
DS 4
AChS 5-10
DNS 11-14 14-19
AS 20, 26-33 20, 28-40 20-54 33-52
N 59 59-64 55-70
4M 71-73 73-74
2D 75-78, 80-82 79, 82-83, 83, 108
84-92, 94-100, 87-88, 93, 108-109
103-107 98-102, 105-106

110-111

two or three periodic phases, or one or two periodic phases and the empty
lattice (which is often needed to get the average conduction-electron filling
correct in the mixture). When we are doped sufficiently far from half
filling, we are in the segregated phase, which is a mixture of the E and F
phases. We consider 5 different values of U in our computations: U =1, 2,
4, 6, and 8. The phase diagram is quite complex, with many of the different
111 phases appearing for different values of U. We summarize which
phases appear in Table 1.

We begin our discussion with the weak-coupling value U = 1 where 50
phases appear. The phase diagram is summarized in Fig. 4. We use a solid
line to indicate the region of the particle density where a particular phase
appears in the ground state (either as a pure phase or as a mixture). The
phases that appear in a mixture at a given density are found by determining
the solid vertical lines that intersect a horizontal line drawn to pass through
the given particle density. The phase diagram has shading included to
separate the regions of the different categories of phases. The numeric
labels are shown to make it easier to determine the actual phases present in
the diagram. We plot similar phase diagrams for U =2 (38 phases),
4 (42 phases), 6 (30 phases), and 8 (25 phases) in Figs. 5-8, respectively.
A schematic phase diagram that illustrates the generic features of the phase
diagram in the electron density, interaction-strength plane appears in
Fig. 9.
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Fig. 4. Phase diagram for U = 1. The solid lines show the regions of electron density where a
particular phase appears (either as a single phase or as a mixture). The horizontal axis labels
the different configurations that are present, and the shading helps to distinguish the different
categories of the phases. The numbers are included as a guide to make it easier to identify the
different stable phases in the diagram.

As can be seen from these figures, the generic phase diagram is quite
complex, and by looking at the different phases in Fig. 3, many of the
phases have stripe-like structures to them. To begin our discussion of these
results, we must first recall the rigorous results known for this model.
When p, = p,=1/2, the ground state is the checkerboard phase (con-
figuration 3) for all U. This can be seen in all of the phase diagrams
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Fig. 5. Phase diagram for U = 2. The notation is the same as in Fig. 4.
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Fig. 6. Phase diagram for U = 4. The notation is the same as in Fig. 4.

plotted. When p,=p,#1/2, the ground state becomes the phase
separated segregated phase when U is large enough. So there is a simplifi-
cation in the phase diagram as we increase U, and the most complex phase
diagram appears in the U — 0 limit. That limit is also the most difficult
computationally, because the differences in the energies between different
configurations also becomes small for small U, and the numerical accuracy
must be huge in order to achieve trustworthy results. This is why we do not
report any phase diagrams with U < 1 here.

Looking at the U = 8 case shown in Fig. 8, we see that as we move
away from half filling, we initially find mixtures between the checkerboard
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Fig. 7. Phase diagram for U = 6. The notation is the same as in Fig. 4.
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Fig. 8. Phase diagram for U = 8. The notation is the same as in Fig. 4.

phase, other diagonal stripe phases, and the empty lattice. When we
examine the structure factors associated with the diagonal stripe phases, we
find that they tend to have more weight along the Brillouin zone diagonal
than elsewhere. Hence, these diagonal stripe phases are being stabilized by
a “near-nesting”’ instability of the noninteracting Fermi surface, and the
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Fig. 9. Schematic phase diagram which indicates the different categories of phases that

appear in the restricted phase diagram.
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overall mixtures are required to maintain the average fillings of the con-
duction and localized electrons. As we move farther from half filling, the
checkerboard phase disappears from the mixtures, and then a series of
neutral phases enter the mix which retain some appearance of diagonal
stripes, but with more and more “defects” to the stripes that make them
look more two-dimensional. We find the localized electron density of these
phases increases as we reduce the total filling, which is what we expect as
we move toward the segregated phase which involves a mixture of the E
and F configurations. Note that the formation of many different stripe
phases, occurs without needing the long-range Coulomb interaction to
oppose the tendency towards phase separation, when we are close to half
filling. Indeed, the ground state is often a phase separated mixture, but it is
a mixture of stripe-like phases, which occur automatically, without the
need to add any other physics to the system. This regime, is the closest to
the Kivelson—-Emery picture, but we see it has more complex behavior than
what they envisioned when they examined the Hubbard model.

Moving on to the U = 6 case in Fig. 7, we find a significant change in
the phase diagram. The grouping of diagonal stripes near half filling
disappears and we instead find the ground state to initially be a mixture
between the checkerboard phase, a truly two-dimensional screen-like phase
(configuration 108) and the empty lattice. Here, if we include a long-range
Coulomb interaction, we would likely form diagonal stripes, but the
mixture would be more complicated because it would include this screen-
like structure as well. As we dope further away, we see a smaller number of
the neutral phases, which look somewhat like diagonal stripes with a large
number of defects in them, and then we go to a very different class of
mixtures, dominated by the presence of the axial stripe phase in configura-
tion 33. As that phase becomes destabilized, we find a cascade of many
other axial stripes entering, before the segregated phase takes over. This
transition from diagonal stripes to axial stripes as a function of the electron
filling, also occurs because of a “near-nesting” effect. The structure factors
of the axial stripe phases are peaked predominantly along the zone edge,
and as we dope further from half filling, this is where nesting is more likely
to occur. The cascade of stable phases that enter after configuration 33 is
destabilized, have a progression of the peaks in their structure factor
moving towards the zone center, which is also expected, since they are
progressively heading towards the segregated phase. A similar kind of
transition from diagonal stripes to axial stripes is seen in the Hubbard
model studies, with the critical density lying near 0.375, as we see here
too.

By the time we decrease to U =4 shown in Fig. 6, we find even more
interesting behavior. Now, when we are near half filling, we find two more
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configurations, a nonneutral phase (configuration 59) and a two-dimen-
sional phase (configuration 109) joining with the checkerboard phase and
configuration 108 in the initial mixtures. Each of these phases looks like a
“square-lattice screen” with differing size “holes™ in the screen. These two-
dimensional structures are not stripe-like and it would be interesting to see
if they could appear in the Hubbard model. As we dope further away, we
enter the axial stripe region, now dominated by configuration 20 first, then
there is a cascade to configuration 33, then a cascade to the segregated
phase. This value of U is a truly intermediate value, where many different
mechanisms for ordering are present and the system can change very
rapidly in response to a modification in the density.

As U =2 (Fig. 5), we see more modifications in the phase diagram.
Now we see other diagonal stripe phases mixing with the checkerboard
phase near half filling. This region would correspond to the Scalapino—
White regime, where the stripe formation is driven more by interplays
between the kinetic and potential energies and nesting effects (driven by
charge fluctuations in the FK model and spin fluctuations in the Hubbard
model). In addition, a much larger number of the 2D phases enter also
close to half filling, illustrating the prevalence of these “screen-like” phases
as well. The axial stripes also enter as we dope further away from half
filling, but the configurations 20 and 33 are not nearly as stable as
they are for slightly larger U. Here, we see the four-molecule phases being
stabilized just before the system phase separates into the segregated
phase.

Finally, for U = 1, shown in Fig. 4, the predominance of the diagonal
stripes, near half filling increases now supplemented by the axial checker-
board stripes, but then there is a plethora of different 2D phases that also
enter as the system is doped somewhat farther from half filling, then we see
a similar evolution, first to AS and then to 4M phases before the
segregated phase. Here there is a tremendous complexity to the phase
diagram, with many different mixtures being present due to the competi-
tion between kinetic energy and potential energy minimization brought
about by the many-body aspects of the problem.

The general picture, illustrated schematically in Fig. 9, now emerges:
near half filling, we often find diagonal stripes and screen-like two-dimen-
sional phases, then a rapid transition to the segregated phase for large U.
As U is reduced, we can dope farther away from half filling before
segregating, which allows many other phases to enter. In particular, there is
a large region of stability for axial stripes, and as U is reduced further, we
see the emergence of axial checkerboard stripes close to half filling, near
the diagonal stripes, and four-molecule phases appearing near the segrega-
tion boundary.
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4. CONCLUSIONS

In this manuscript we have numerically studied how the FK model
makes the transition from the checkerboard phase at half filling to the
segregated phase as the density is lowered. Since these two phases are very
different from one another, there are many different pathways that one
might imagine the system to take in making this crossover. Indeed we find
that the pathway varies dramatically as a function of U. For large U, we
have a relatively simple transition between diagonal stripe-like phases
which become more two-dimensional as the localized electron density
increases, until the system gives way to the segregated phase. As U is
lowered, we first see two-dimensional-“‘screen”’-like phases enter, then we
see axial stripes emerge, followed by four-molecule phases and axial
checkerboard stripes. The complexity of the phase diagram greatly
increases as the interaction strength decreases.

It is interesting to ask how we might expect these results to change if
we allowed more configurations into our restricted phase diagram. We
don’t know this answer in particular, but we do know, that as we increase
the size of the unit cells that are considered in the restricted phase diagram,
the percentage of phases that enter into the phase diagram decreases as the
unit cell size increases. For example, of the 23,755 candidate phases only a
small fraction (111 or 0.5%) appear in the phase diagram. While the
number of phases appearing in the complete (unrestricted) phase diagram is
probably infinite, it is also likely that they correspond to a relatively small
fraction of all of the possible candidate states, and hence we don’t expect
dramatic changes to the phase diagram as more candidate phases are con-
sidered. We can illustrate this point in more detail by comparing three
interrelated phases, such as phases 31, 32, and 33. Note how phase 32 is a
higher-period phase composed of the unit cells of phases 31 and 33. In a
restricted phase diagram that has a maximal period small enough that
phase 32 is not considered, we find a mixture of phases 31 and 33 to
appear. As we increase the maximal period, we find phase 32 enters, but it
does not remove phases 31 or 33 from the phase diagram (in fact, phase 33
is particularly stable and occupies a large region of phase space for some
diagrams). Hence, we conjecture that the generic picture for additional
phases to enter into the phase diagram will be phases closely related to the
current phase mixtures, and which will, in most likelihood, occupy rela-
tively small regions of the phase diagram. Of course, exceptions to this
picture can occur, and are difficult to predict.

Another interesting question to ask is how do these results for the FK
model shed light on the stripe-formation problem in the Hubbard model.
By continuity, we expect these results not to change too dramatically as we
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turn on a small hopping for the localized electrons (although now we must
summarize our results in terms of correlation functions for the two kinds of
electrons, since both are now mobile). But we also know for many fillings,
there will be a “phase transition” as a function of the hopping, since the
ground state of the Hubbard model is not ferromagnetic for all fillings and
large U (which is what the segregated phase maps to in the Hubbard
model). The results are likely to be closer to what happens in the Hubbard
model close to half filling, because the analogue of the antiferromagnetic
phase is the checkerboard phase, and that is present for all U in the
Hubbard model at 7' = 0. In general, we also feel that the FK model phase
diagram must be more complicated than the Hubbard model phase
diagram because of the mobility of both electrons in the latter. We feel one
of the most important results of this work is that there may be two-dimen-
sional phases that are not stripe like that form ground-state configurations for
some values of the filling in the Hubbard model, and such configurations will
be worthwhile to investigate with the numerical techniques that currently exist.

In conclusion, we are delighted to be able to shed some light on the
interesting question for the FK model of how one makes a transition from
the checkerboard phase at half filling to the segregated phase away from
half filling. Since Elliott Lieb has had an important impact in proving the
stabilization of these two phases, we find it fitting to ask the questions
about how the two phases inter-relate. Perhaps these numerical calculations
can further inspire new rigorous work that helps to identify the pathway
between these two phases.
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